触摸一体式执行器模块

ZXQT-C2 系列产品说明书

Ver:1.0

Ħ

录

接线前请检查电动阀门在外部切换开关控制下能否在动作区 域内工作,有无异常现象,能否达到开度的零位与满位,确保 限位开关能正常工作。

接线前请检查电动阀门中电位器有无强电,用万用表分别测量 电位器三接线端子,确保电位器在执行器运转过程中的阻值变 化正常,排除断点等异常现象。

执行器模块与电动阀门间连线要一致,仔细检查两者端子的对 应关系;特别注意执行器模块电源、输入信号与输出信号接线, 切莫把电源接至弱电信号端,同时用仪表测量控制输入信号在 执行器模块接受信号范围内。

如与电动阀门配套使用,在严寒、酷热、高温的环境下开箱时, 仪表应于现场存放3小时以上方可进行标定校验。

一、概述

尊敬的用户,执行器模块与电动阀门接线并接 通电源后,执行自动转角/位移标定(在自动状态 下同时短按 AM 键+▲键后同时松开即启动了自动 标定),执行器模块执行标定后会自动保存,产品 即可正常工作。您可以省去浏览如下说明●

ZXQT-C2 系列产品是以工业单片机为核心的智能信号采集控制系统,体积小巧,可选择安装在电动阀门的接线盒内,能直接接收工业仪表或计算机 等输出的 4~20mA DC 或 0~10V DC 或 0~5V DC 信号,与电位器和编码器反 馈的电动阀门配套对各种阀门或装置进行精确定位操作,能对电动阀门的转 角(或位移)进行自由标定,同时输出 4~20mA DC 或 0~10V DC 或 0~5V DC 的电动阀门转角位置(或位移)反馈转换信号,可精确设定电动阀门转角位 置的下限限位值和上限限位值,执行器模块采用 3 个按键操作,4 个 LED 灯 (可选配)可直接显示执行器模块状态,0.91 寸 0LED 屏通过按键切换显示 阀位实际开度值、阀位设定开度值、执行器模块壳内温度,操作方便。

二、主要技术参数

- ◆ 供电电压: AC85~AC260V
- ◆ 最大功率: 80W
- ◆ 控制精度: 0.0%~9.9%(通过精度设置菜单参数可调)
- 可接电动执行器反馈信号:电位器 500 Ω~10KΩ;数字型单圈编码器
 (SPI通讯)
- ◆ **可接收外部控制信号 (DC)**: 4~20mA (0~5V、0~10V 等出厂前定制)
- ◆ 输入阻抗 (4~20 mA): 250 Ω
- ◆ 通过修改正反作用参数可设定;通过修改丢信信号参数可设定;
- ◆ 输出执行器位置信号:低漂移输出 4~20mA DC 对应执行器全闭至全开, 信号完全与输入隔离(光电隔离),输出负载≤500Ω
- ◆ 环境温度: -20°C~80°C,相对湿度: ≤90%RH
- ◆ 通讯方式: 支持 485 通讯
- ◆ 有超温保护功能(可设定壳内温度报警参数和是否启动温度报警): 执行器模块壳内温度≥80°C(可设)时,停止对执行器控制
- ◆ 可通过按键自由标定输入信号所对应电动阀门的动作区间(一般标定为 电动阀门全闭、全开位置)
- ◆ 可设定最大阀位限制值与最小阀位限制值
- ◆ 密码锁,防止误操作
- ◆ 带故障报警信息指示功能
- ◆ 按输入信号和电动阀门转角位置进行智能步距调整精确定位

三、控制面板

参数 显示	1	OLED 视窗	通过按键切换显示阀门实际开度值、阀门设定开度值、执行 器模块壳内温度、设定参数和指示灯的具体含义(可设)
状态 指示	2	OPEN	电动阀门开运行指示 亮:开运行中
	3	SHUT	电动阀门闭运行指示 亮:闭运行中
	4	AUTO	自动状态 亮:自动状态,接收外部给定信号控制
	5	MANU	手动状态 亮:手动状态,可以按键操作电动阀门开闭
按键	6	AM	点动:手动/自动切换键或参数修改后确认键 长按 4 秒:参数的进入菜单功能
	7	▼	数值减少键,自动状态下还用于切换显示执行器模块壳内温 度,手动状态下为"闭"
	8		数值增加键,自动状态下还用于切换显示阀位设定开度值, 手动状态下为"开"
	9	1	红外接收孔
组合 按键	1	AM+▼	同时按键,返回上一级菜单和退出指示灯含义显示
内 招 键	1	1	复位开关,复位密码,位置如下图所示

V

五、接线方式

参照下图接线端子和阀体外壳上的接线图连接好电动阀门和 电源连线,注意连接时的极性,为减少电机干扰,应将电动阀门的 电机控制线和反馈信号线分开走线。

1. 电位器与电动阀门通过一个五线和一个三线接插件连接,其中电位器上 GND 端可以与电动阀门外壳连接或悬空不接;电位器的 100%、RV、0%分别接电动阀门内的反馈电位器的三个端子,其中 RV 接电位器的滑臂,电位器的 0%接电动阀门关动作时与滑臂之间电阻不断减小一端,电位器的 100%则接另一端;SHUT、OPEN、COM 分别电动阀门电机的闭、开、COM 端子;其余端子悬空不接。(电位器的弱电信号线应尽量短些,若必须使用较长的连线时,应采用屏蔽信号线,外屏蔽与控制柜外壳妥善接地)

编码器与电动阀门器通过一个五线接插件连接,线序参考以下接线
 图。(此五线端子电位器和编码器不能共用)

交流电源 AC 型接线图

注:执行器模块 COM、OPEN、SHUT 为有源输出端子, COM、OPEN 与 COM、SHUT 对 应输出电压为电源电压。

请以产品外壳的实际接线图接线!

六、菜单列表

主菜单	显示值	含义	出厂值
	丢信开	丢信号报警时阀门运行到全开的位置	
丢信模式	丢信闭	丢信号报警时阀门运行到全闭的位置 丢信	
	丢信停	丢信号报警时阀门立即停止运行	
	工作田	设定值为 0%时,阀门全开;设定值为 100%,阀	
正后作田	正作用	门全闭。随着设定值的增加,阀门的开度减小	反作用
	反作用	设定值为 0%时,阀门全闭;设定值为 100%,阀	
		门全开。随着设定值的增加,阀门的开度增加	
转在沿署	精度值	精度可调,控制精度,阀位值百分比与设定值百	0. 4%
们反议里		分比之间的误差范围,	
限位设置	输出下限	阀位百分比在自动控制时达到的最小百分比值	0.0%
附证权量	输出上限	阀位百分比在自动控制时达到的最大百分比值	100. 0%
	由子制动	电子刹车,开阀信号与闭阀信号同时发出,能够	开启
	电丁制动	快速停止阀门动作	
		当阀门因为死区范围过小导致阀门抖动,当两次	
开关设置	糖度白油	后找不到设定的阀门位置时,就会自动调高精	关闭
	们之口啊	度,增大死区范围,让控制模块平稳找到设定的	
		阀位值	
	温度开关	是否开启温度报警	关闭
宓孤设罟	宓孤佶	即设置密码或更新密码。如密码为 0000, 默认无	0000
山时以重	省归阻	需密码就可以进入菜单	
反馈横式	电位器	位置传感器类型为电位器	由位哭
及與扶丸	编码器	位置传感器类型为编码器	
恢复出厂	恢复出厂	将执行器控制模块所有的参数重置为出厂值	/
手动标定	标定下限	阀门的下限手动标定	/
J-40100AE	标定上限	阀门的上限手动标定	/
温度设置	/	设置温度报警的阈值(最低温度)	80°C
堵转时间	/	时间可调	10s
活动沿来	波特率	有 2400/4800/9600/19200/38400 五种选择	9600
	通讯地址	地址范围 001~247	001
	回差设置	为了消除机械误差,当开阀时,当前阀位值百分	
回差设置		比=设定值百分比+回差百分比;当闭阀时,当前	0%
		阀位值百分比=设定值百分比-回差百分比	
计 4 进入费单用而 00 秒工场作户动运同测控用表			

注: 1. 进入菜单界面 90 秒无操作自动返回测控界面;

2. 其它参数工厂保留使用,可以咨询客服部。

七、产品标定操作方法

给定信号源、执行器模块、电动阀门、输出信号测量仪表接线示意 图

产品标定流程示意图

 1、上电,此时显示阀位实际开度值(由电位器或编码器采集到的原始值, 进行百分比换算的阀位值),执行器模块处于自动测控状态;若断开输入信 号后用手柄摇动执行器时,阀位实际开度值随电动阀门开度增大而增大,如 出现非同趋势变化,请检查执行器模块与电动阀门电位器反馈信号接对否;

 2、自动控制状态下,按▲查看阀位设定开度值,此时可查看输入信号的变 化趋势和稳定性;(此阀位百分比只会显示 0.0%~100.0%的值)

3、自动控制状态下,按▼可观察执行器模块内温度,当温度超过 80°C时(**可**), 从行器模块停止对电动阀门的开、闭控制;

4、自动标定界面:同时按 AM+▲键即可进入阀位的下限与上限的自动标定;

5、按 AM 键切换为手动控制状态,分别按▲和▼键,检测电动阀门应对应为 "开"和"闭"趋势动作。(此阀位百分比会显示 0.0%~100.0%的以外的值, 比如-10.0%或 109.0%)。

6、标定执行器的零位和满位。(↗执行器模块首次与电动阀门配合使用,必须进行电动阀门转角的标定,此后执行器模块才能正常工作,此标定对执行器模块的输入、输出信号无影响。)

方法一:简易自动标定法(↗<u>此标定方法要求电动阀门需有电气限位或机械</u> 限位)

在**自动状态下**同时按住 AM+▲键后松开即启动了自动标定,电动阀门先确认零位,朝小开度方向动作,动作到最小开度限位处判断约 5 秒后确认为零位(对应阀位为 0.0%);零位确定后,电动阀门朝最大开度动作,动作到最大开度限位处判断约 5 秒后确定为满位(对应阀位为 100.0%),标定完成后返回自动状态。标定结果自动保存。

方法二:手动标定法

在自动状态下按 AM 键 4 秒进入菜单界面,通过▼或▲键切换到手动标 定子菜单按 AM 键

(1)进入到标定下限参数,按▼或▲,电动阀门相应朝"闭"或"开"方向运作,同时显示的阀位实际开度值也相应逐渐变小或变大,当到达期望零位后(如已配阀可以目测阀门开度,一般设在全闭位置),按 AM 键,**零位确**

认,进入标定上限参数;

(2) 在显示标定下限参数下同理按▼或▲到期望满位(如已配阀可以目测阀门开度,一般设在全开位置),按 AM 键**满位确认**,并返回主菜单界面;

(3)同时点按 AM+▼,返回测控状态。

7、堵转处理程序

如控制电动阀门电机通电下电位计阻值在堵转判断时间(堵转时间参数)内 没有变化,执行器模块判定为堵转,报闭阀堵转或开阀堵转,响应堵转报警 及处理程序。

注: 堵转判断时间=堵转时间参数, 堵转后停止输出时间=堵转时间参数 x3, 故障后一直循环判断在堵转时, 给反向控制信号则执行器模块立刻响应, 如 果电动阀门运行则堵转间隔时间置零并消除堵转报警。

堵转时间参数取值范围 0~60s。

(关方向显示闭阀堵转、开方向显示开阀堵转,代码与阀位值交替闪烁出现, 控制器断开电机驱动电源),以上故障过程如认为故障已排除可以通过手动 模式点动面板按键或重新上电恢复测控。

备注: 电动阀门过热保护、电动阀门传动齿轮间隙大、电位计传动齿轮间隙 大、电位计质量等都会响应为堵转测控程序,所以出现此故障,请先排电动 阀门的问题。

八、恢复出厂值

(此操作成功后,对应的相关值会有误差,不建议使用,可作排查故障用途)

进入主菜单界面,选择恢复出厂选项,按 A/M 键确认回到测控界面。

 1. 当菜单界面返回至测控界面时,执行器模块自动保存修改参数;如在 菜单界面时执行器模块断电则不保存修改参数,此时执行器模块运行参数仍 为上一次参数。

 2. 重新上电时一直按 A/M 键不松开,观察到界面出现"保持模式"字样后,即为成功进入模式切换界面,点按▲键或▼键即可切换"电流模式"或 "电压模式",松开 A/M 键退出模式切换界面并将参数恢复到出厂值。

九、故障处理

错误代码	含义	报警逻辑	
丢信号!	如标定的输入给定零端信 号为 4mA,则当给定电流≪ 3mA 时认为信号中断,将进 行信号中断处理程序,同时 显示屏显示"丢信号!"	电流通过相应的电路会转化成电压信号,然 后有单片机 ADC 外设进行采集,单片机会将 3. 0mA 所对应的 AD 值进行换算采集,当低于 这个 AD 值时,执行器模块将会丢信号报警	
转向错误	执行器模块和电动阀门间 的信号反馈线或开闭线接 反 (编码器无此项报警)	由于在自动标定或手动标定时不是上限值大 于下限值的情况,因此执行器模块会根据这 种异常的发生来判断转向错误报警的发生	
闭阀堵转	电动阀门往闭方向时堵转	在自动控制状态下,当设定信号所对应的百 分比值不在阀位百分比精度范围内,相应的 执行器会闭运行。在这个过程中,如果单片 机采集 AD 值在"堵转时间"规定的时间内没 有变化就会立即停止并闭阀堵转报警,执行 器模块在等待"堵转时间"x3 的时间后,会 重新控制电机闭运行,持续"堵转时间"的 时间。然后一直循环往复,换句话说,停止 控制电机的时间是控制电机闭运行的时间的 3 倍(堵转时间可设)	
开阀堵转	电动阀门往开方向时堵转	在自动控制状态下,当设定信号所对应的百 分比值不在阀位百分比精度范围内,相应的 执行器会开运行。在这个过程中,如果单片 机采集 AD 值在"堵转时间"规定的时间内没 有变化就会立即停止并开阀堵转报警,执行 器模块在等待"堵转时间"x3 的时间后,会 重新控制电机开运行,持续"堵转时间"的 时间。然后一直循环往复,换句话说,停止 控制电机的时间是控制电机开运行的时间的 3 倍(堵转时间可设)	
温度异常	执行器模块壳内温度超过 80℃,具体与温度设置参数 有关	利用热敏电阻的阻值分压原理,单片机的 ADC 测量热敏电阻的分压值进行测温,当热敏电 阻因为温度的影响达到相应阻值时,相应的 分压值也会变化,单片机通过判断所对应的 AD 值即可判断所对应的温度,从而判断是否 超过预设温度(精度±2°C)	

显示值	一般排除方法
	如现场无可靠信号源,可把执行器模块阀位信号输出正负对应接入输入。
丢信号!	"丢信号!"消除,执行器模块无故障(注意此操作必需要求执行器模块
	阀位值显示大于 0)。
	1. 自动标定,在开阀时,观察显示数字是否是从小到大连续变化,有连
林白母语	续变化标定完成可消除"转向错误";数字变化或大或小或走走停停,
牧門 相厌	故障在电位器。
	2. 手动开阀,数字从大到小连续变化,则接线错误。
	1. 阀门是否卡死,
	2. 电机是否正常,
(四)(四)(本)(土)	3. 连线是否牢固,
的附近和	4. 执行器模块电位计/编码器转动部分是否异常。
711月1日刊	上述4点正常:执行器模块切换到手动状态先按▲键、后按▼键,执行
	器是否有相应的运行,如果没有,执行器模块有故障(此操作必需要求
	阀门在半开状态)。
	将产品放在低于温度报警上限值的环境下运行,是否显示温度异常:
温度异常	1. 如有异常则执行器模块发生故障;
	2. 如无异常则执行器模块工作环境温度过高。

电位器接错判断表

正常 接法	错误接法	报警逻辑
0% RV 100%	RV 0% 0% 100% 100% RV	这两种接法都会让单片机的 ADC 会得到固定值,0V 或 3.3V,这 样会导致阀位百分比值始终没有变化,在自动标定完成后会因 为阀位上限值和下限值相等导致"转向错误"报警,或者在自 动控制状态会因为阀位值不变化导致"开阀堵转"报警或"闭 阀堵转"报警(以上三种报警提示可能存在接线错误)
	100% RV 0%	由于这样接会导致在自动标定的时候上限值低于下限值,从而 会"转向错误"报警

本执行器模块出厂之前已对其输入、输出信号进行严格标定,接线后一般 只需标定零、满位即可正常使用,如有任何不明之处请与相关技术服务部门联 系。

15

十、通讯协议

ZXQT 系列带 RS-485 诵讯功能-MODBUS RTU 诵信协议 V1.3 通信波特率 9600(可调) 8 位数据 1 位停止位 无校验 485 通信接口

参数名称	参数地址	说 明
远程/本地	0x0000	数据不等于 0 远程, 数据等于 0 本地(可读写)
实际阀位值	0x0001	通讯的数值减去 1999 结果为实际阀位值(只读)
况宁河位店	0x0002	读数据时,数值减去 1999 结果为实际阀位值(可读
以正阀位值		写)写数据时,实际阀位值加 1999
错误代码	0x0003	数据为只读,数值表示错误代码

「设备地址」「命今号03」「起始寄存器地址高8位】「低8位」「读取的寄

[设备地址] [命令号 03] [返回的字节个数][数据 1][数据 2]...[数据

[设备地址] [命令号 06] [需下置的寄存器地址高 8 位] [低 8 位] [下置

[设备地址] [命今号 06] [需下置的寄存器地址高 8 位] [低 8 位] [下置

举例 1: 假设控制器的通讯地址为 1, 现要将控制器的本地操作状态改成

的数据高 8 位] [低 8 位] [CRC 校验的低 8 位] [CRC 校验的高 8 位]

的数据高 8 位] 「低 8 位] [CRC 校验的低 8 位] [CRC 校验的高 8 位]

存器数高 8 位] [低 8 位] [CRC 校验的低 8 位] [CRC 校验的高 8 位]

控制器成功接收读命令响应格式:

控制器成功接收写命令响应格式:

诵讯远程操作状态。

的实际阀位值。

控制器接收写命令格式:

控制器接收读命令格式:

n] [CRC 校验的低 8 位] [CRC 校验的高 8 位]

本控制器只写了 modbus 功能码 03、06 的读写命令。

内部寄存器各参数对应的地址: (数据为双字节)

上位机发送: [01][03][00][01][00][01][D5][CA]

举例 2: 假设控制器的通讯地址为 1, 实际阀位开度为 5.0, 要读取控制器

控制器出错返回: [01] [86] [异常码] [CRC 低 8 位] [CRC 高 8 位]

上位机发送: [01][06][00][00][00][01][48][0A] 控制器成功返回: [01][06][00][00][00][01][48][0A] 控制器成功返回: [01][03][02][08][01][7E][44] 控制器出错返回: [01] [83] [异常码] [CRC 低 8 位] [CRC 高 8 位] 举例3: 假设控制器的通讯地址为1. 要将控制器的设定阀位改为50.0。 上位机发送: [01][06][00][02][09][C3][6E][0B] 控制器成功返回: [01][06][00][02][09][C3] [6E][0B] 控制器出错返回: [01][86][异常码] [CRC 低 8 位] [CRC 高 8 位] **举例 4:** 假设控制器的通讯地址为 1. 要将控制器实际阀位值和设定阀位

值一起读上来, 设实际阀位值为 5.6, 设定阀位为-24.8。 上位机发送: [01][03][00][01][00][02][95][CB] 控制器成功返回: [01][03][04][08][07][06][D7] [0A][6C] 控制器出错返回: [01][83][异常码] [CRC 低 8 位] [CRC 高 8 位]

错误代码说明:

8bit. 每一位代表不同的含义 第0位:丢信号(电压信号没有此类错误) 第3位:转向错误(编码器没有此类错误) 第4位:闭堵转报警 第5位:开堵转报警 第7位: 超温报警(可设开关) 其余位为保留位, 始终为0 异常码说明: 2: 代表起始寄存器地址错误, 只允许有4个寄存器 3: 代表读取寄存器数量异常,只能读取 1~4 个寄存器 4: 代表寄存器地址和寄存器数量都不正常

(他们的错误优先级是数越小优先级越大) 附加说明:

1、 远程操作状态通过通讯的方式改变阀位设定值,本地操作状态通过输入 的信号来改变阀位的设定值、系统上电默认为本地操作状态。

2、通讯地址(可设),波特率(可设2400,4800,9600,19200,38400)。

为了保持通信正常,请使用 RS485 屏蔽双绞线并接地;避免与强电共管穿 线:使用隔离型 RS485 转换器:长距离通讯两端 AB 各并联一个 120 Q 电阻。

十一、开发者选项(仅供公司内部人员参考,用户不开放)

进入方式:在上电显示文字 LOGO 的时候,三个按键一直全按,显示屏出现"开发者选项"后即可松开全部按键。

1. 界面显示及操作说明

- (1) 信号源类型
 - ①电流模式:信号源是 4-20mA 输入与输出
 - ②电压模式:信号源是 0-10V/0-5V 的输入与输出
- (2) 信号源输入下限:显示信号源输入最小 AD 值
- (3) 信号源输入上限:显示信号源输入最小 AD 值。
- (4) 信号源输出下限:显示信号源输出最小 PWM 占空比值,可由▽ 键和 △键进行 PWM 占空比的调节,从而改变输出的电压或电流的不同。
- (5) 信号源输出上限:显示信号源输出最大 PWM 占空比值,可由▽ 键和 △键进行 PWM 占空比的调节,从而改变输出的电压或电流的不同。
 - (6) 开机界面 LOGO 选择
 - ①公司 LOGO: 选定之后, 以后每次上电都会选择显示东仪电子的图片 LOGO 和文字 LOGO
 - ②用户 LOGO:选定之后,以后每次上电都会选择显示用户电子的图片 LOGO 和文字 LOGO(仅显示模板,实物图片实际效果为准)
- 2. 退出方式

进入 LOGO 选择界面的时候,再次单击 AM 键即可退出开发者选项界面, 开发者选项界面的参数将会被 FLASH 保存。

3. 信号源选择(只提供电压和电流选项)

- (1)进入方式:在上电显示文字 LOGO 的时候,AM 键一直全按,不能松开 AM 按键。AM 键按住的同时,用另一个手指按动▽键即可切换信号源类型。
 - ①保持模式:信号源的类型保持上一次的使用类型
 - ②电流模式:信号源的类型为电流的输入与输出
 - ③电压模式:信号源的类型为电压的输入与输出
- (2) 退出方式:松开 AM 按键即退出,相应的信号源的参数也将会被保存 下来。
- 4. 显示代码
 - (1)进入方式:在出现文字 LOGO 时,随意按住▽键或△键任意一个按键, 即可进入。
 - (2) 界面显示: 2122
 - (3) 退出方式:松开▽按键或△按键即可退出。

开发者选项界面操作流程示意图

